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OF INTERPLANETARY TRAJECTORIES TO MARS

By Gerald Knip, Jr., and Charles L. Zola

SUMMARY

A method of analysis is presented for use in interplanetary trajec-

tory studies which are essential to complete mission studies. The method

employs arbitrary spheres about each planet that serve to differentiate

planetocentric and heliocentric motion. The overall trajectory is com-

posed of three trajectory segments - two planet-centered segments and one

Sun-centered. A continuous coast path is formed by matching the coordi-

nates of each of the planetocentric segments with those of the heliocen-

tric segment at the respective spheres of influence. This method has

been used to study the planetocentric and heliocentric segments of one-

way trajectories from Earth to Mars. For a trip of fixed duration,

planetocentric parameters such as inclination of escape plane, inclina-

tion of encounter plane, injection trajectory angle, arrival trajectory

angle, and injection time were varied to determine their effects on

injection-point location and mission velocity-increment requirements.

Trips of 150-, 225-, and 300-day duration were used to investigate the

relations among velocity-increment requirements, departure date, trip

time, communication distance, heliocentric transfer-plane inclination,

and synodic period of departure.

For a 1-day span in injection time, values of the planetocentric

parameters can be selected to favor specific mission requirements, such

as the use of available tracking stations or the avoidance of intense re-

gions of the Van Allen belts, with only a slight penalty in velocity-

increment requirements.

Because of planetary orbit eccentricities, the synodic period of de-

parture has a pronounced effect on velocity-increment requirements and on

arrival communication distance. Therefore, the use of circular-coplanar

planetary orbit data is not recommended in specific Earth-to-Mars mis-
sion studies.
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INTRODUCTION

Trajectory studies are essential to the planning of any space mis-
sion. In order to obtain a precise trajectory that could be used in fi-
nal guidance and control settings for a specific flight, n-body calcu-
lations must be made. This procedure is, however, very cumbersomeand
does not lend itself to the broad parametric-type survey required for
preliminary mission studies. Therefore, a multiple two-body method of
analysis has been developed that is characterized by elliptical, nonco-
planar (three-dimensional) planetary orbits. The method of analysis em-
ploys spheres of influence about the planets. The three 9equlred tra-
jectory segments - two planet-centered segmentsand one Sun-centered -
are matched in their coordinates at the spheres of influence to form a
continuous path from an injection point near Earth to an arrival point
near the destination planet. This procedure differs from that used in
references i to 5 principally in the relation of the heliocentric seg-
ment of th_ trajectory to the planetocentric segments. In the "three-
center" method of references 1 to 5, the heliocentric segment is inde-
pendent of the other segments. In the sphere-of-influence method of the
present report, the three segments are interdependent. Therefore, the
"three-center" method is restricted to the heliocentrlc portion of an
interplanetary trajectory, while the present method can be used to in-
vestigate the effects of planetocentrle parameters on the overall inter-
planetary trajectory.

To illustrate the accuracy of the sphere-of-influence method, re-
sults for two representative trajectories from Earth to Mars are com-
pared with the results of n-body calculations.

The effects, on a 300-day Earth-to-Mars trajectory, of changes in
the planetocentric segmentswere studied. The interrelation amongthe
following planetocentric parameters is discussed: injection time,
injection-point longitude and latitude, injection- and arrival-velocity
azimuths, escape- and encounter-plane inclination, and velocity-increment
(_V) requirements.

0ne-way trajectories from Earth to Mars were investigated to study
the three-dimensional problem with respect to iV, heliocentric transfer-
plane inclination , trip time, communication distance, injection or de-
parture date, and synodic period of departure. These data are compared
with results of reference 6, which are characterized by circular-coplanar
planetary orbits.

@
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ANALYSIS

The spheres-of-influence model employed in calculating interplane-

tary trajectories consists of a three-dimensio_al solar system having

r-
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mutually inclined elliptical planetary orbits (sketch (a)). The arbi-

trary spheres about each planet serve as a boundary, inside of which it

is assumed the vehicle is acted upon only by the inverse-square central

force field of the planet. Outside the spheres of influence it is as-

sumed the vehicle is acted upon only by the inverse-square central force

field of the Sun. A typical interplanetary trajectory is composed of

three distinct coast trajectory segments: the geocentric escape hyper-

bola, the heliocentric trajectory segment, and the planetocentric en-

counter hyperbola. For purposes of calculating energy (_V) require-

ments, it is assumed that all trips start and end in circular orbit. An

impulsive thrust is assumed on injection at 1.1 Earth radii (perigee of

the escape hyperbola) to initiate the coast phase of the interplanetary

trip. Upon arrival at the perigee of the encounter hyperbola (1.1 Mars

radii), an impulsive thrust is assumed to establish a circular parking
orbit.

Positions of bodies are usually referenced to one of two systems of

coordinates, the ecliptic system or the equatorial system. The funda-

mental planes are the ecliptic plane (plane of Earth's orbit) and equa-

torial plane (plane of the Earth's equator), respectively. The polar

coordinates in the ecliptic system are called longitude and latitude_

and in the equatorial, right ascension and declination. The present

method uses the equatorial system for the geocentric portion of the anal-

ysis and the ecliptic for the heliocentric segment.

The symbols used in this study are given in appendix A, while the

equations for the method of analysis are given in appendix B. An IBM

704 digital computer was used to perform the computations.

ditions required for a typical machine calculation are:

(1)

(2)

(3)

(4)

Escape and encounter hyperbola perigee radii

Perigee injection time

(6)

Initial con-

Perigee-to-perigee trip time, Tto t

Escape-plane inclination ie, or nodal longitude of the escape

plane IN (see sketch (b))

Encounter-plane inclination im, or nodal longitude of the

planetocentric encounter plane _NP

Type of trip, direct or nodal (In a direct trip the vehicle

travels in one plane during the heliocentric segment of its

flight defined by the departure and encounter transition

points on the respective spheres of influence (sketch (a)).

In a nodal trip, two planes are involved during the helio-

centric segment of the trip. The vehicle travels in the



/ lof transfer

// i plane with Mars' _k
/ Iorbital plane -k \

/ Vehicle I "\ _0 "Arrival

/ _ra_fer I _ at Mars
/ plane_._ [ j_////_ \

/ ___ _/Z////// _ \._-Mars' orbital

/
of transfer / _/ L% /

pl an e wit h _ /f//////__ I _y/

ecliptic-.. / l/////////////_.. I/.-_Node of Mars'
b'-. -'"" ////J/////J _'" orbital plane

/ _ /"_Ecliptie (_art_'oorbitalplano_
DeparturJfrom Earth /

General geometry of model

F

!

/
Sphere of
influence

of Earth

Geocentric_ _

trajectory _

segment .....

Departure /
transition point J

/

Orbit of Mars

rSphere of
I influence

l of Mars

Orbit of Earth I

_Arrival

perigee

_Mars-centered

trajectory

segment
Sun \

%-Encountertransition

point

\'_Heliocentric

_Injection trajectory

perigee segment

Segmentation of trajectory

(a) Typical three-dimensional trajectory to Mars.
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plane of the ecliptic until one of the two end points of the

line of intersection of Mars' orbital plane and the ecliptic

plane is reached. (This line is called the nodal line, while

the points are called ascending node and descending node.)

Then a _V is imparted such that the vehicle completes the

remainder of the heliocentric segment in Mars' orbital plane.)

!

w

z

x

Vernal equino_x_-_

j-Sphere of
influence

Escape plane

Y

"_Equatorial plane

(b) Escape-plane orientation.

(v)

(8)

Type of parking orbit at Earth_ direct (counterclockwise as

seen from north equatorial pole) or retrograde (clockwise)

Type of parking orbit at destination planet, direct (counter-
clockwise as seen from north pole of Mars' orbital plane) or

retrograde



From a typical calculation 3 the following information is obtained:

(1) _V to depart from a given circular parking orbit

(2) &V to establish a circular orbit on encounter at the desti-
nation planet

(3)

(4,)

(5)

Orbital elements of the three required trajectory segments_

that is_ escape hyperbola, heliocentric segment_ and the en-

counter hyperbola

Coast time on each trajectory segment

Perigee injection and perigee arrival coordinates

An iterative calculation is required to obtain a solution for a

given set of inputs. An acceptable solution is achieved when two suc-

cessive sets of coordinates for the escape and encounter transition

points (located at Earth and the destination planets' spheres of

influence 3 respectively) agree to within an arbitrary value of tolerance°

The departure transition point connects the escape hyperbola and the heli-

ocentric trajectory segment. The encounter transition point connects the

heliocentric trajectory segment and the encounter hyperbola. For a toler-

ance of l0 miles (8.7 Int. naut. miles)_ the time required for a typical
calculation is 5 seconds.

P
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RESULTS AND DISCUSSION

This section is divided into three major subdivisions. The first

compares the accuracy of the results obtained using the sphere-of-

influence method and n-body calculations. The second discusses the ef-

fects of variation of geocentric and planetocentric parameters on the

magnitude of the injection and arrival velocities and on the coordinates

of the required injection and arrival perigee points for a 500-day mis-

sion from perigee at Earth to perigee at Mars. The third section pre-

sents interrelations among such overall mission parameters as trip time_

heliocentric transfer plane inclinationj orbit-to-orbit _V require-

ments_ arrival communication distance_ departure date_ and synodic peri-

od of departure. The _V and communication distance requirements are

compared with the eircular-coplanar data of reference 6.

Evaluation of Method of Analysis

In order to illustrate the accuracy of the sphere-of-influence meth-

od, two typical trips were investigated. The results obtained are com-

pared with those of n-body precision calculations. Included in the
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precision calculations were the perturbing effects of the following bod-

ies: Sun, Earth_ Mars, Saturn, Jupiter, and the Moon. The Earth's ob-
lateness was also included.

Table ! indicates differences between the sphere of influence and

the initial n-body escape hyperbola orbit and AV requirements to be

small. All parameters for the 150-day trip agree to within i percent.

Most parameters for the 300-day trip agree to within 3 percent. The neg-

ative signs in the percent difference column indicate the sphere-of-

influence values to be less than those for the n-body calculations. The

close agreement suggests that results from the sphere-of-influence method

can be used advantageously as initial injection conditions for n-body

precision calculations and for studying the effects of planet-centered

trajectory segments on an overall interplanetary trip° The small ve-

locity errors indicate two-body impulsive AV to be a reliable indi-

cation of propulsion requirements for use in high-thrust mission analy-

ses.

Figure i indicates the positions of the vehicle relative to Earth

and Mars for the 150- and 300-day trips, respectively. These typical

trips illustrate the effect of trip time on the accuracy of the method

of calculation. The path of the vehicle for the 300-day trip is more

nearly "tangential" to the orbital paths of Earth and Mars on departure

and arrival than for the 150-day trip (cf. figs. l(a) and (b)). For the

300-day trip, the vehicle also has lower velocities with respect to Earth

on injection and Mars on arrival (relative velocities) than for the

150-day trip. (Unless stated otherwise, all velocities will be con-

sidered as velocities of the vehicle with respect to the particular

planet-centered segment of the trajectory being discussed.) Because of

these two factors, vehicle velocity and path character, the perturbing

effects of Earth and Mars are greater for the 300- than for the 150-day

trip.

Effect of Planetocentric Trajectory Parameters

In planning interplanetary missions, a knowledge of the effects of

planetocentric escape-plane inclination ie and encounter-plane incli-

nation im, injection time, and trajectory path angle _ on injection
and arrival coordinates and velocities is essential (see appendix Bj

sketch (n)). The effects of these parameters were investigated for a

500-day Earth-to-Mars trajectory. For this investigation of the planeto-

centric segments of the trajectory, the following conditions were fixed:

(I) Radius of injection point, i.i Earth radii

(2) Radius of arrival point, i.i Mars radii
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The following parameters were assigned the values noted except when the
parameters were varied to determine their effect on the 500-day trajec-
tory:

Arbitrary injection time on Oct. 19, 1962

Inclination of escape plane, i e

Injection trajectory anglej _i

Inclination of encounter plane, i m

Arrival trajectory angle, _a

Universal time, 12 hr

9O°

0o

30° or 90°

0o

!

g_
OU

Effect of escape-plane inclination. - The escape-plane inclination

was varied over its possible range of values, which was found to be from

90 ° to 17.18 ° for this particular injection time and trip time (see

sketch (c)). The velocity vector at the departure transition point (at

the sphere of influence) remained nearly constant. The slight changes

irEscape planes

11 z i and 5

Equatorial pla_L /FU2

_---_--' "/ /rEscape plane 2

Vernal

equinox _.

Inclination -_

Relative

velocity

Escape plane

i I 2 S

Plane of escape path

Inclination, i e, deg 90 17.18 90

Right ascension of descending node, _N, deg 109.45 199.45 289.45

Relative velocity at sphere of influence

Magnitude, miles/sec i 1.98 1.98 1.98

Declinatlon_ deg [6.85 17.18 17.40

Right ascension, deg I 109.45 109.45 109.45

(e) Range of possible escape-plane inclination from minimum to polar

orbits for a given 500-day trip from Earth to Mars. Encounter-plane

inclination, 90°; arrival trajectory angle, 0 °.
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that did occur in the declination of the velocity vector were caused by

the required changes in the heliocentric trajectory segment. These

changes are required in order to match the coordinates of the geocentric

trajectory segment (at the desired inclination) and the heliocentric seg-

ment at the transition point. Since the escape plane must contain the

velocity vector at the transition poin% a minimum escape-plane inclina-

tion exists for each injection time as explained in appendix B.

Sketch (d) shows the injection and arrival perigee coordinates for

several escape-plane inclinations and an encounter-plane inclination of

50 °. If the velocity vector at the departure transition point remained

constant as the escape-plane inclination varied 3 the injection perigee

points PZ would lie on a perfect small circle. (The section of a

sphere made by a plane passing through the sphere but not its center is

called a "small circle" of a sphere.) However, a quasi small circle re-

sults because of the slight variation in the declination of the velocity

vector that accompanies a change in escape-plane inclination (see sketch

(c)). If retrograde escape paths had been included 3 a complete quasi

small circle would be shown on sketch (d).

Variations of the geocentric orbit parameters are shown in figure

2 for the range of escape-plane inclinations investigated. Considering

only direct motion of the vehicle_ the declination hp of the perigee

injection points varies from -48.5 ° to +14.0 °. The longitude @e of

the perigee injection points varies from 84.5 ° E to 117.5 ° E. The magni-

tude of the injection velocity was found to be practically independent

of escape-plane inclination. The azimuth of the injection velocity _Z
varied from 0° to 180 °. Increasing the encounter-plane inclination from

50 ° to 90 ° resulted in only slight changes in the geocentric orbit pa-

rameters_ as shown in figure 2.

For the range of escape-plane inclinations (90 ° to 17.5 °) investi-

gated_ only minor variations in the Mars-centered orbit parameters re-

sulted, as shown in sketch (d) and figure 5. The coordinates of the ar-

rival perigee points remained almost constant. The longitude and lati-

tude varied by 0.21 ° and 0.5°j respectively. The arrival velocity var-

ied by only 0.0025 mile per second.

Since the injection and arrival velocities are essentially inde-

pendent of escape-plane inclination as determined by the present method_

the mission AV is also independent of this parameter. Thus 3 an in-

clination can be selected to favor some mission requirement such as the

use of available tracking stations or the avoidance of the intense re-

gions of the Van Allen belts. The plane of the parking orbit at Earth

would be selected to coincide with the selected escape plane.
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At Earth."

_ Longitudes referenced to

Greenwich at perigee

time

equatorial plane

r Equatorial plane
t%__ _ _I---IN_ ",_g_ _ote.

11_ Planes for P2

_P2

Escape-orbit perigee

Inclination of plane 3 iej
deg

Longitude of descending

node, qNG

Longitude of perigee, _e

Declination of perigee, kp

Azimuth at perigee, qZ

PI k

PI

9O

i P2 P3 e4 e5

30 17.3 30 90

84.5 E

84.5 E

-48.3

IBO

51 E 358 E 300 E 265 E

116.5 E i17.5 E 113.5 E! 84.5 E
-27.5 -15 -2.3 I+14

i04. O 8&.5 gO I O

At Mars:

Longitudes referenced to

Approx. / _ Mars-Sun line at perigee

_i, 2, 3,4,5 _._/ N time

/ _-_. Latitudes referenced to

Mars' orbital plane

Sun _ [ //" _ _ 0° Reference longitude

Mars' orbital plane about Sun

Approx. _ 2/

Pi'2'3'4'SJ*

Encounter-orbit perigee

Inclination of plane,

im, deg

Longitude of descending

node, _NP

Longitude of perigee, _m

Latitude of perigee, kMp

Azimuth at perigee, qZ P

o
• 64.60 E

236.87 E 236.85 E

4.60 _ 4.44 S

60.52 60.50

P3

I

64.41 E

1
236.83 E

I 4.36 S

60. 29

L

P4

30

64.21 E

236.78 E

4.28 S

60.28

30

63.82 E

236.66 E

4.10 S

60.26

(d) Departure and arrival perigee coordinates and path azimuths for 300-day

trip from Earth to Mars with departure from perigee at 1.1 Earth radii

on October 19, 1962 (Greenwich noon) and arrival at perigee at 1.1 Mars

radii.

t_
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Effect of encounter-plane inclination. - The encounter-plane in-

clination was varied over its possible range to find its effects on the

500-day trajectory. For this portion of the analysisj the escape-plane

inclination was fixed at 90 °. The coordinates of the injection point

and the injection velocity are practically independent of encounter-

plane inclination (see sketch (e)). The latitude of the velocity vector

at the arrival transition radius was found to be nearly constant for the

range of possible encounter-plane inclinations. The slight changes that

did occur were caused by required changes in the heliocentric trajectory

segment. These changes were required in order to match the coordinates

of the heliocentric trajectory segment and the encounter trajectory seg-

ment (for the desired inclination) at the encounter transition point.

For the possible range of encounter-plane inclinations the arrival

perigee points formed a quasi small circle (see sketch (e)). A quasi

small circle rather than a perfect small circle resulted again because

of slight variations in the latitude of the velocity vector at the en-

counter transition point. Since the arrival points are perigee points

of the respective encounter hyperbolas_ the trajectory angle is 0°. If

retrograde encounter paths had been included, a complete quasi small cir-

cle would be shown in sketch (e).

The effects on the planetocentric parameters of varying the

encounter-plane inclination are shown in figure 4. For each arrival

point, the magnitude of the arrival velocity was found to remain almost

constant. The latitude of the arrival perigee points kMp varied from

51 ° S to 71° N of Mars' orbital plane. The longitude (q0m, referenced to

the Mars-Sun line at time of perigee) varied from 227 ° to 282 ° .

These results can be related to the orbit-to-orbit mission dis-

cussed in the previous section. Because the injection and arrival ve-

locities are practically independent of encounter-plane inclination_

the mission _V will be independent of this parameter provided the

plane of the desired parking orbit at Mars is coincident with the se-

lected encounter plane. Thus_ the inclination of the encounter plane

can be selected to favor a particular mission requirement. For example_

an inclination might be selected to assure complete photographic cover-

age of Mars.

Effect of injection trajectory an61e. - The effect of injection

trajectory angle _i at 1.1 Earth radii on the departure and encounter

transition point coordinates is presented in figures 5 and 6. The in-

Jection trajectory angle was varied by varying the perigee radius of the

escape hyperbola. Therefore# in place of injection trajectory angle3

the curves of figures 5 and 6 could have been labeled with the corre-

sponding perigee radii. For a fixed escape-plane inclination 3 a 60 °

change in injection trajectory angle results in 3 at most I an 0.8 ° change
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North

Arox

Greenwich __

At Earth:

Longitudes referenced

to Greenwich at

perigee time

Latitudes referenced to

equatorial plane

Equatorial plane

Escape-orbit perigee P1 P2 P3

Inclination of plane, ie, deg

Longitude of descending node, hNG, deg

Longitude of perigee_ _e, deg

Declination of perigee, Xp_ deg

Azimuth at perigee_ _Z 3 deg

Injection velocity, V i

9O

264.64 E

84.64 E

+13.92

0

6.88

9O

264.44 E

84.44 E

+15.97

0

6.88

9O

264.44 E

84,44 E

i+14.04

0

6.88

!

O1

f

At Mars.

orbit

perigee- - - _iii_-'wll _

Sun _

Encounter-

Longitudes referenced to

Mars-Sun line at perigee

time

Latitudes referenced to

Mars' orbital plane

0 ° Reference
J

I longitude
._PMars' orbital plane

about Sun

Encounter-orbit perigee

Inclination of plane, im, deg

Longitude of descending node, _NP' deg

Longitude of perigee, _m, deg

Latitude of perigee, kMp , deg

Azimuth at perigee, _ZP, deg

PI P2 P3

90 19.3 90

I01 E i0 E 281 E

282 E 230 E 281 E

31 S 12 N 71 N

0 75.3 180

(e) Departure and arrival perigee coordinates and path azimuths for

300-day trip from Earth to Mars with departure from perigee at 1.1

Earth radii on October 19, 1962 (Greenwich noon) and arrival at

perigee at 1.] Mars radii.
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in either of the path coordinates at the Earth's sphere of influence

(fig. 5) and an 0.025 ° change in longitude at Mars' sphere of influence

(fig. 8). At both spheres of influence, the size of the quasi small

circle shrinks as injection trajectory angle increases.

As the injection trajectory angle is increasedj the velocity at the

departure transition point remains essentially constant. Since the to-

tal energy of the escape hyperbola remains constant 3 the change in mag-

nitude of the injection velocity for the range of conditions shown in

figures 5 and 6 is only 0.001 mile per second. The arrival velocity

varied by less than 0.0005 mile per second. Thus 3 both injection ve-

locityand arrival velocity are nearly independent of injection trajec-

tory angle. For a ground launch_ the injection trajectory angle might

be selected to favor some booster trajectory requirement. However, in-

Jection trajectory angles other than approximately 0° increase the

booster propellant consumption because of greater gravity losses.

For circular orbit departures, injection trajectory angles other

than 0° have a marked influence on the injection velocity increment.

Figure 7 indicates the injection velocity increment associated with in-

Jection trajectory angles from 0° to 60° for a 500-day circular orbit-

to-orbit mission. The velocity increment required at Earth ranged from

2.2 miles per second for a 0° injection trajectory angle to 6.1 miles

per second for a 60° angle. Therefore, for circular-orbit departures,

a 0° injection trajectory angle would be selected to minimize the

velocity-increment requirement.

Effect of arrival trajectory angle. - The effect of arrival tra-

Jectory angle c_ on the coordinates of the transition point at Mars'

sphere of influence is shown in figure 8. For a fixed value of

encounter-plane inclination, the maximum change in longitude of the tran-

sition points is less than 0.4 °. For the range of arrival trajectory

angles and encounter-plane inclinations shown in figure 87 the variation

in arrival velocity is 0.001 mile per second, and the variation in in-

Jection velocity is 0.000¢ mile per second. Thus injection and arrival

velocities are almost independent of arrival trajectory angle.

Effect of departure time. - Sketch (f) indicates the escape hyper-

bola path parameters for two 500-day trips to Mars. The departure times

for these two trips differ by 12 hours° During this time the Earth ro-

tates approximately 180.5 ° about its spin axis and revolves 0.5 ° in its

orbit around the Sun. The values in the P2 columns are representative

of the changes that occur during a 12-hour period. The perigee coordi-

nates, right ascension and declination, remain almost constant. Vari-

ations of 0.5 ° and 0.1 °, respectively_ were obtained. Injection veloc-

ity remains constant and its azimuth changes only 1°. The longitude of
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Oct. 19, 1962

(Greenwich noon)_"

At Earth:

Longitude referenced to

Greenwich at perigee
North time

Latitude referenced to

z-O_a_ri_6_lane

/-Vernal equinox

_ _______Equatorial plane

" -P5

_2 Planes for P2 and

P1 _ P4 not shown

!

Perigee injection- Oct. 18, 1962 iGreenwich midnight)

Escape-orbit perigee

Inclination of plane, ie; deg

Longitude of descending node,

nglLuae of perigee, (Pe

Declination of perigee, hp

Azimuth at perigee; _Z

Right ascension of perigee, _p

Injection velocity, V i

P1

90

266 E

266 E

-48

180

289.8 E

6.88

P2

3O

23A E

298 E

-27.6

i03.5

320.9 E

6.88

P5

17

176 E

!298.5 E
-14.4

82

521.7 E

6.88

P4

30

118 E

294 E

-2

60

317.5 E

6.88

P5

9O

86 E

266 E

+14

0

289.8 E

6.88

Perigee injection - Oct. 19; 1962 (Greenwich noon)

Inclination of plane, ie, deg

Longitude of descending node,

_NG

Longitude of perigee_ _e

Declination of perigee, _p

Azimuth at perigee, _Z

Right ascension of perigee,

Injection velocity, Vi

90

84 E

8A E

-48

180

np 289.4 E
6.88

50

51 E

115.8 E

-27.5

104.5

520.4 E

6.88

i7.5

560 E

117 E

-15

81

321.4 E

6.88

30

298 E

i13.5 E

-2.3

59.5

317.0 E

6.88

90

265 E

84 E

+14

0

289.4 E

6.88

(f) Departure perigee coordinates and path azimuth for 300-day trip from

Earth to Mars with departure from perigee at i.i Earth radii on October

18, 1962 (Greenwich midnight) and October 19, 1962 (Greenwich noon) and

arrival at perigee at i.i Mars radii. Inclination of planetocentric

encounter plane, 90 ° .
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perigee (_e, referred to Greenwich meridian at time of perigee injection)

changes by 182.2 ° mostly because of the Earth's rotation.

The relations among a number of the trajectory variables are shown

in figures 9 to ll for a span in departure time of 1 day. For a con-

stant escape-plane inclination_ the right ascension and declination of

the departure transition points vary by only 0.7 ° or less as shown in

figure 9. Similarly_ the inertial coordinates of the perigee injection

points (right ascension and declination) vary only slightly for the same

1-day period (fig. 10). Figure ll shows the relations among the follow-

ing geocentric orbit parameters: departure time_ escape-plane inclina-

tion, longitude of the descending node of the escape plane, the decli-

nation and longitude of the injection point, and the azimuth of the in-

jection velocity. Figure ll indicates all longitudes with respect to

the Greenwich meridian at the time of perigee injection. The declina-

tion of all possible perigee injection points for the mission varied

from about +13.5 ° to -48.5 °. Th_s same range was obtained for a fixed

departure time. The longitude of possible perigee injection points

varied through 360 °. The azimuth of the injection velocity varied from

0° to 180 °.

The magnitude of both the injection and the arrival velocities at

i.i planet radii varied only slightly for the 1-day span of injection

time investigated. For the orbit-to-orbit mission_ the dependence on

matching of trajectory segments produced changes in mission _V of

less than 0.i percent. This means that once during each orbit of the

vehicle around Earth injection could occur without a significant penal-

ty in the AV requirement. For example_ if the plane of the parking

orbit was oriented correctly with respect to nodal longitude and in-

clined at 50 °, injection could occur every time the vehicle was at a

latitude of about 2.5 ° S of the equator during a span of about i day.

For a ground launch of the 300-day trajectory, injection time could be

selected to favor a particular launch site.

Thus_ from the preceding investigation of the planetocentric por-

tions of a 500-day Earth-to-Mars trajectory, the following remarks can

be made. The magnitude of the injection and arrival velocities is af-

fected only slightly by rather wide variations in a number of the tra-

Jectory variables: inclination of escape plane 3 inclination of en-

counter plane 3 injection trajectory angle, arrival trajectory angle_

and injection time. The significance of this is that in many missions

values of these parameters can be selected to favor specific mission re-

quirements.

Effect of Overall Trajectory Parameters

Previous discussion has shown the orbit-to-orbit mission AV to

be insensitive to planetocentric escape- and encounter-plane inclination.
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Therefore_ arbitrary values of inclination were assigned during the
study of the heliocentric segment of the trajectory. This study con-
siders the interrelation amongthe following parameters: heliocentric
transfer-plane inclination_ orbit-to-orbit mission _V, trip time, de-
parture date, and arrival communication distance.

In order to shorten the computing time required of the 704 computer_
the tolerance for an acceptable solution was relaxed. Relaxing the tol-
erance induced errors of 0.05 percent or less in the velocity require-
ments, 0.25 percent or less in the communication distancej and 0. i ° or
less in the transfer-plane inclination.

Effect of trip time and departure date. - Figure 12 indicates the

variation of the heliocentric travel angle e for trip times of 150,

225, and 300 days as a function of departure date. Because the angular

velocity of Earth is grea_er than that of Mars, the travel angle for a

given trip time decreases for later departure dates. The 225- and 300-

day trips require a travel angle of 180 ° for departure dates of Septem-

ber 13, 1962 and November 19, 1962_ respectively. Travel angles near

180 ° are of special interest in a three-dimensional analysis because of

their effect on transfer-plane inclination and AV requirements.

Because the orbital plane of Mars is inclined with respect to the
ecliptic plane (1.85°), the inclination of the heliocentric transfer

plane increases rapidly for trips having travel angles near 180 ° (fig.

13). This increase in inclination is accompanied by an increase in the

normal components of the vehicle's heliocentric departure and arrival

velocities. Therefore_ the orbit-to-orbit _V requirements also in-

crease with inclination. When the ecliptic angle between Earth and Mars

is 180 °, a maximum value of _V occurs since an inclination of 90 ° is

required of the transfer plane. The heliocentric travel angle in this

case would be 180°±_f (latitude of Mars with respect to the ecliptic

plane). For each trip time shown in figure 14, a minimum _V require-

ment results by selecting a particular launch date.

In the region of 180 ° travel angle, a two-plane transfer can over-

come the disadvantage of high AV required of a single-plane transfer.

One type of two-plane transfer is a nodal transfer in which the space

vehicle travels in the plane of the ecliptic until the line of the Mar-

tian nodes is encountered. At this point a _V is imparted to the vehi-

cle such that its velocity vector is rotated from the ecliptic plane to

the Martian plane. The remainder of the heliocentric trajectory is then

completed in the Martian plane. For trips with travel angles near 180 °,
a nodal transfer results in a lower mission AV than a direct transfer

(fig. 15). The mission AV for a nodal transfer includes the _V re-

quired to change planes at the line of nodes. Except for the trips re-

quiring high single-plane inclinations_ the _V requirements for single-

plane transfers are less than those for nodal transfers.

!
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Effect of synodic period. - If the planetary orbits were circular

and coplanar, a trajectory study for one synodic period would be suffi-

cient. However, because of the inclinations and eccentricities of the

planetary orbits, some marked differences in _V and transmission dis-

tance requirements can result for trajectories having the same trip time

and the same departure configuration angle _ (the angle between Earth

and Mars on date of departure measured in the plane of the ecliptic) but

launched in different synodic periods. The effects of synodic period on

AV requirements and arrival communication distance are shown in figures

16 to 18. (Circular-coplanar results are also shown and will be discussed

in a later section.)

0rbit-to-orbit mission AV requirements for trips to Mars in 1962

and 1971 are shown in figures 16(a) and (b) for trip times of 150 and

300 days_ respectively. The separation distances during the oppositions

related to these years are approximately the maximum and minimum dis-

tances that can occur. The February Z, 196Z opposition distance is 61.8

million miles (53.7 million Int. naut. miles), while that of August 6,

1971 is 34.6 million miles (ZO. 1 million Int. nauto miles). The orbit-

to-orbit mission AV for the 150-day trip in 1962 is approximately 1

mile per second higher than that in 1971. However, the reverse is true

for the ZOO-day trip indicated in figure 16(b).

The AV differences between the 1962 and 1971 data of figure 16 are

due mainly to the eccentricities of the orbits of Earth (0o0167) and Mars

(0.093A). Mars is about 26 million miles (22.6 million Int. naut. miles)

farther from the Sun when at aphelion than when at perihelion. Its peri-

helion velocity is about Z miles per second greater than its aphelion

velocity.

The velocity increments required at Earth and Mars for a direct

transfer are compared in figure 17 with those required for a nodal trans-

fer. The velocity increments for a nodal-type transfer are not penalized

by inclination since no plane change is required on departure or arrival.

As indicated, the velocity increments required of a direct- and a nodal-

type trip at the planets are approximately equal. Therefore_ the effect

of inclination of the transfer plane on the AV requirements for these

direct trajectories is slight.

In addition to affecting the AV requirements_ the eccentricities

of the planetary orbits can cause significant variations in the trans-

mission distance_ or straight-line distance between Earth and Mars on

date of arrival. The sketch in figure 18(b) shows typical transmission

distances for Z00-day trips in 1962 and 1971. Figure 18 indicates the

variation of transmission distance with departure configuration angle.

For the i50-day trips (fig. 18(a))_ the transmission distance is 27 to

58 million miles (23.5 to S0oA million Int. naut. miles) greater in 1962
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than in 1971o For the 500-day trips (fig. 18(b)) the differences range
from 60.4 to 77 million miles (52.5 to 66.9 million Int. naut. miles).

Comparison of three-dimensional and circular-co_lanar results. - In
reference 6 it is pointed out that the results of a circular-coplanar

analysis of Earth-to-Mars trajectories are approximate and should be used

only in the preliminary planning of missions. An indication of just how

approximate circular-coplanar results are is shown in figures 16 to 18.

For the 150-day trips of figure i6(a), the circuiar-coplanar mission _V

values either fall between the 1962 and 1971 values or exceed the 1962

values by 4 percent (0.29 mile/sec) or less, For the 500-day trips of

figure i6(b) 3 the circular-coplanar values lie between the 1962 and 1971

values and exceed the 1962 values by 5°5 percent (0.20 mile/sec) or less.

Figure 17 shows the differences that exist between the circular-

coplanar and three-dimensional AV values required at Earth and Mars for

150-day trips to Mars in 1962 and 1971. For both trips the differences

at Mars were greater than those at Earth. At Mars the differences varied

from 0 to 0.35 mile per second in 1962 and from 0.52 to 1.0 mile per sec-

ond in 1971. These differences are caused by the eccentricities of the

planets and, therefore, changes in radius, velocity_ and trajectory angle.

Because of Mars' larger eccentricity (0.093) compared with Earth's

(0_0167), these parameters vary more for Mars in traveling from peri-

helion to aphelion. The circular-coplanar transmission distance values

lie roughly midway between the 1962 and the 1971 values (fig. 18). The

transmission dists_nces for the 150- and 300-day trips were at the mini-

mum i0 million (8°7 million Int° naut. miles) and 40 million miles (34.8

million Int. naut. miles) less, respectively_ in 1971 and 22 million

(19.1 million Int. naut. miles) and 19 million miles (16o5 million Int.

naut. miles) more in 1962 than the circular-coplanar values° In view of

these large discrepancies the use of eircular-coplanar results is not

recommended in specific Earth-to-Mars mission studies.

Choice of node on nodal trip, - On many nodal trajectories with hel-

iocentric travel angles greater than 180o3 the rotation of the velocity

vector from the ecliptic to the Martian plane can be made at the first or

second crossing of the line of nodes. An advantage exists in making the

plane change at the node nearest the aphelion of the transfer ellipse in

order to minimize the required velocity increment. This results in the

minimum AV since the required increment is proportional to the vehicle's

velocity (_V = 2V cos _ sin Im/2). A savings of 0.23 mile per second is

realized for the 500-day trip by making the plane change near aphelion

rather than perihelion 3 as shown in figure 19.

b_
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SUMMARY OF RESULTS

Data from the three-dimensional, multiple two-body, sphere-of-

influence method of analysis are of sufficient accuracy to permit the use

of this procedure in investigating both the planetocentric and heliocen-

tric segments of interplanetary trajectories. Results for specific

flights of interest can also be used as initial conditions for n-body
calculations.

For an interplanetary trip of fixed duration, the magnitudes of the

injection and arrival velocities are affected only slightly during a span

of i day in injection time by rather wide variations in a number of tra-

jectory variables such as inclination of escape plane, inclination of en-

counter plane, injection trajectory angle, and arrival trajectory angle.

While the inclinations of the escape and encounter planes may be varied

without penalizing the mission velocity increment, injection and arrival

trajectory angles other than zero increase the propulsion requirements

for both parking-orbit and ground-launch departures. Thus, for many

orbit-to-orbit missions, values of escape- and encounter-plane inclina-

tion can be selected to favor specific mission requirements, such as the

use of available tracking stations or the avoidance of intense regions

of the Van Allen belts.

For Earth-to-Mars trajectories, the synodic period has a pronounced

effect on velocity-increment requirements and on the arrival communica-

tion distance. Approximately 1-mile-per-second additional increment in

velocity and 27 to 58 million additional miles (23.5 to 50.4 million

Int. naut. miles) in transmission distance are required for a 150-day

trip in 1962 compared with one in 1971. For the same trip circular-

coplanar velocity-increment results ranged from 0.9 mile per second

too low in 1962 to 1.2 miles per second too high in 1971. Therefore_

the use of circular-coplanar data is not recommended in specific Earth-

to-Mars mission studies.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, January 17_ 1962
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APPENDIXA

SYMBOLS

a semimaJoraxis, miles

E eccentric anomaly, deg

e eccentricity

I obliquity or inclination of equatorial plane with respect to the
ecliptic plane3 deg (see appendix B, sketch (i))

Im inclination of Martian orbital plane with respect to ecliptic
plane, deg (see appendix B, sketch (r))

i e inclination of geocentric escape plane with respect to equatorial
plane, deg

i inclination of planetocentric encounter plane with respect to
m Martian orbital plane, deg

m miss distance 3 meananomaly, or mass (see appendix B_ sketch (J))

n

P

P_

P

R

r

T

Ttot

Tl-2

t

V

mean orbital motion, deg/day

period of planet, days

perigee locations (_ _ 13233 , • o .)

semilatus rectum_ miles

heliocentric radius_ miles

planetocentric radius

time of perihelion passage

trip ti_e starting from orbit about Earth and ending in orbit

about destination planet_ days

trip time from departure transition point to encounter transition

point

time, days

velocity, miles/sec
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v

x

Y

Z

P

T

8

5'

T

_N

_NG

1]Np

_]p

true anomaly, deg (see appendix B, sketch (n))

heliocentric x-axis displacement of encounter transition point

measured in Mars-ecliptic ascending node coordinate system_

miles (see appendix B, sketch (r))

y-axis displacement_ otherwise same as x

z-axis displacement; otherwise same as x*

trajectory angle, or angle between velocity vector and local hori-

zontal, deg (see appendix B, sketch (n))

angular displacement of radial component of vehicle's relative

velocity from total velocity vector at sphere-of-influence

radius, deg (see appendix B, sketch (j))

celestial latitude with respect to ecliptic plane_ deg (see ap-

pendix B, sketch (p))

angle measured in Martian orbital plane from Mars-ecliptic as-

cending node to Mars at time t 3 deg (see appendix B_ sketch

(q))

z-axis 3 otherwise same as

z-axis_ otherwise same as _'

x-axis displacement of departure transition point in vernal

equinox - equatorial coordinate system 3 miles (see appendix B,

sketch (g))

x-axis displacement of departure transition point in nominal de-

parture ecliptic coordinate

right ascension of equatorial - escape-plane nodal line 3 deg

(see appendix B, sketch (_))

longitude of descending node of escape-orbit plane with equato-

rial plane measured east from Greenwich meridian at time of

perigee inJection_ deg

longitude of descending node of plane of encounter orbit with

Mars' orbital plane measured from Mars-Sun line at time of

perigee arrival_ deg

right ascension of perigee injection point for desired perigee
radius
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_Q,i

_Q,2

_R, i

TIR, 2

rlT

_TP

_VE

_Z

_ZP

_0

kMT

equatorial longitude of transition point measured from escape

plane - equatorial node, deg (see appendix B, sketch (m))

longitude of transition point measured in escape plane from es-

cape plane - equatorial node, deg (see appendix B, sketch (m))

equatorial longitude of zero perigee transition point measured

from escape plane - equatorial node, deg (see appendix B_

sketch (_))

longitude of zero perigee transition point measured in escape

plane from escape plane - equatorial node, deg (see appendix

B, sketch (Z))

right ascension of transition point for specified perigee, deg

(see appendix B, sketch (m))

longitude of vehicle transition point at destination planet's

sphere of influence measured counterclockwise from planet-Sun

line on date of arrival at sphere of influence, deg

longitude of positive x'-axis of nominal departure coordinate

system measured eastward from vernal equinox, deg (see appen-

dix B_ sketch (i))

azimuth of injection velocity on departure from i.i Earth radii

measured clockwise from north equatorial pole_ deg

azimuth of arrival velocity vector at encounter perigee measured

clockwise from Mars' north orbital pole 3 deg

right ascension of zero perigee transition point_ deg (see ap-

pendix B, sketch (_))

heliocentric travel angle measured in transfer plane from depar-

ture transition point to encounter transition point, deg (see

appendix B, sketch (r))

geocentric latitude with respect to equatorial plane, deg

planetocentric latitude of perigee of encounter orbit with res-

pect to Mars' orbital plane, deg

planetocentric latitude of transition point of encounter orbit

with respect to Mars' orbital planej deg

!
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x-axis displacement of space vehicle encounter transition point

in nominal arrivalcoordinate system, miles (see appendix Bj

sketch (q)), or force constant

y-axis; otherwise same as

z-axis_ otherwise same as

R2/ RI

y-axis_ otherwise same as

y-axis_ otherwise same as _'

inclination of heliocentric transfer plane with respect to eclip-

tic plane, deg (see appendix B, sketch (r))

longitude of perigee of escape hyperbola measured in equatorial

plane counterclockwise from Greenwich meridian at time of peri-

gee, deg

longitude of perigee of encounter hyperbola measured in Martian

orbital plane counterclockwise from positive x-axis or planet-

Sun line at time of encounter perigee, deg

heliocentric ecliptic angle from Earth to Mars at time of injec-

tion, deg

orbital longitude of perigee measured counterclockwise from es-

cape plane - equatorial ascending node, deg (see appendix B,

sketch (o))

angle measured in ecliptic from departure transition point to

Mars-ecliptic ascending node, deg (see appendix B, sketch (p))

angle measured in ecliptic from Mars-ecliptic ascending node to

encounter transition point projected, deg (see appendix B,

sketch (r))

angle measured in ecliptic from Earth to Mars-ecliptic ascending

node, deg (see appendix B, sketch (p))

angle measured in ecliptic from Earth to departure transition

point projected, deg (see appendix hj sketch (p))

Mars ascending ecliptic node (see appendix B, sketch (p))
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locations of escape- or encounter-plane's descending node (N =
1,2_3_ . . .)

Subscripts:

a

C,P

D

E

i

INF

N

NX

NY

NZ

P

PL

R

S

T

TX

TY

TZ

0

i

2

@

arrival at i.i Mars radii

circular velocity at desired radius

perigee of encounter hyperbola at !.i Mars radii

escape hyperbola

injection at I.i Earth radii

sphere of influence

normal component

x-axis component in nominal departure ecliptic coordinate

system

y-axis_ otherwise same as NX

z-axis_ otherwise same as NX

perigee of escape hyperbola at i.i Earth radii

planet

radial component

Sun

transition point

x-axis component in vernal equinox - equatorial coordinate system

y-axis, otherwise same as TX

z-axis_ otherwise same as TX

zero perigee or initial

departure transition point

encounter transition point

Earth

!
P

O1

c_ Mars
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APPENDIXB

CALCULATIONPROCEDURE

Planet Position and Velocity

Before any of the geocentric or heliocentric requirements for a
given interplanetary trip can be determined_ Earth and the destination
planet must be located. Kepler's equation is used in determining the
orbital radius and velocity for Earth and the destination planet at time
of injection and arrival 3 respectively. Orbital elements were chosen
that would best fit the calculated positions of the planets with those
indicated in references 7 and 8. The solution of Kepler's equation as
given in reference 9 is presented in equations (BI) to (B7).

Kepler's equation

n(t - T) = m = E - e sin E

which is transcendental in E# is solved by iteration.
motion of the planet in its orbit is obtained from

(BI)

The mean angular

ll4. (BZ)
n_ p

while the mean anomaly m is

m -- n(t - T) (B5)

An initial value of eccentric anomaly E 0 is obtained from the equation

2
e

E 0 = m + e sin m + z-"=-sin 2m (B4)

The corresponding value of the mean anomaly can be obtained from Kepler's

equation (BI) :

m 0 = E 0 - e sin E 0 (B5)

A new value of E is obtained by applying a correction to E0:

In - m 0

AE = (B6)
i - e cos E 0
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Therefore,

E1 = Eo + _ (BT)

Equations (B$) to (B7) are iterated until an acceptably small dif-

ference, AE., is obtained. Knowing the eccentric anomaly_ the true anoma-

ly of the particular planet for the time specified is defined by

cos E - e (B8)
cos v = 1 - e cos E

_i - e2 sin E (Bg)
sin v = 1 - e cos E

The heliocentric radius for the position specified is

!

ol

R = a(l - e2) (BI0)
1 + e cos v

while the trajectory angle is determined from

= tan__if 1 +e eSincosVv)

and the velocity from

(Bll)

v- _(2a -2) (BI2)
aR

Geocentric Segment of Trajectory

Since expressions derived for either departure from Earth or encoun-

ter at Mars would be similar, the analysis herein will be confined to the

departure or geocentric segment of the trajectory. The purpose of the

geocentric analyses is to (i) define the escape hyperbola and (2) deter-

mine the coordinates of the starting point (perigee injection point) and

the end point (transition point) of the geocentric escape hyperbola.

The following parameters are required for the geocentric portion of

the calculation procedure:

(i) Sphere-of-influence radius, rIN F

(2) Perigee injection radius, rp
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(3) Inclination of escape plane ie or longitude of the nodal line

_N of escape plane

(4) Components of vehicle' s velocity relative to Earth at Earth' s

sphere of influence (VNx , VNy , VNZ).

The first three are given, while the fourth is obtained from the helio-

centric portion of the calculation procedure discussed later.

Sphere of influence. - The sphere of influence employed in this

three-dimensional, two-body analysis serves as a boundary, inside of

which the planet is considered as the central force while all other per-

turbing effects are neglected. The radius of this sphere is

2/5_
rlN F = rpL\m S /

(BI3)

which for Earth is 575,000 miles (499,617.5 Int. naut. miles) and for

Mars is 360,000 miles (312,823.0 Int. naut. miles). These values were

chosen since they resulted in better initial values of the geocentric

escape-orbit parameters for use in the precision calculation than were

obtained using other radii (better in the sense that they resulted in

a smaller miss distance at the destination planet than that of the de-

sired encounter-orbit radius of i.i rpL).

Coordinate system. - In the analysis of the geocentric portion of

the trajector_ a coordinate system was chosen having the equatorial

plane as the x-y plane_ the x-axis positive in the direction of the ver-

nal equinox, the z-axis positive in the direction of the north equatori-

al pole, and the y-axis to complete the right-hand coordinate system as

shown in sketch (g):

Vernal equinox (1950)

Equatorial plane

Y

(g) Geocentric coordinate system.



28

From the heliocentric segmentof the trajectory (discussed in a later
section entitled "Determination of heliocentric travel angle") the com-
ponents of the space vehicle's velocity relative to Earth at the sphere
of influence are given with respect to the nominal departure coordinate
system shownin sketch (h) In this system the x'-axis is the Earth-Sun

Ecliptic plane
X T

!

O7

(h) Nominal departure system.

line at time of departure from the sphere of influence and is measured

as positive in the direction away from the Sun_ the z'-axis is posi-

tive in the direction of the north ecliptic pole_ and the y'-axis com-

pletes the right-hand coordinate system. In order to obtain the x-y-z

components of the relative velocity in the vernal equinox - equatorial

system_ two rotations are required as shown in sketch (i). The first

X !

Z f Z

X

y!

(i) Coordinate transformation.

rotation will determine the x-y-z components in the vernal equinox -

ecliptic system. The second rotation will determine the x-y-z components

in the vernal equinox - equatorial system. Combining these two rotations_

the x-y-z components in the vernal equinox - equatorial system are
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VTX = VNX cos qVE - VNy sin _VE

VTy = (VNx sin _VE + VNy cos _vE)cos I - VNZ sin

VTZ (VNx sin _VE + VNy cos qVE)sin I + VNZ cos

(BI4)

where I is the obliquity of the ecliptic plane and qVE is the angle

from the vernal equinox of 1950 eastward to the nominal x-axis.

Two points on the planetocentric conic will be of major importance

in the resulting relations. These points are the perigee injection

point, at a desired perigee radius, and the transition point at the

sphere of influence where the vehicle's motion is considered to change

from geocentric to heliocentric. The coordinates of the geocentric and

heliocentric trajectory segments will be matched by means of iteration.

Determination of transition-point coordinates. - If initially a

perigee radius of zero is assumed, the coordinates for the transition

point can be written as

rT2NF = r_ = XT2 + YT2 + ZT2 (BI5)

Differentiating gives

rTr T = X_T + YTYT + ZTZ T (BI6)

Also

(BI7)

But, since the perigee radius was stated as zero,

(B18)

Therefore,

.2

r--T- +-_--T + _- _T + VTT + VTT

or

r-T= TTT' rT VT' _TT V_T
(BI9)
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For a perigee radius other than zero_ the relative velocity vector
VT at the sphere of influence must be displaced by a miss distance m
as seen in sketch (j). The relative velocity is defined as the velocity
of the vehicle with respect to Earth.

Center
of Earth_

!

/

ir Sphere of
/ influence r Zero perigee

/ i
vector

(J) Departure transition point.

!

From similar triangles

m VN

rlNF = V_T = sin _ (B20)

Equal offset distances on either side of the zero perigee or all radial
case result in identical hyperbolic orbits_ except that their sense of

rotation is either direct (counterclockwise) or retrograde (clockwise)

as seen from the equatorial north pole. Therefore_ for a fixed perigee

radius two possible departure (or transition) points and, therefore, two

possible perigee injection-point locations exist for this two-dimensional

case.

As shown in sketch (k), the transition point for the case of the

perigee radius equal to zero is contained by an infinite number of great-

circle planes. Any particular great-circle plane passing through the

zero perigee transition point has a resulting inclination with the equa-

torial_ x-y plane, and a resulting position of the nodal line in the x-y

plane. Therefore, by specifying either the inclination of the escape

plane or the longitude of the nodal line together with the transition

point for a perigee radius of zero defined by the zero perigee velocity

vector, the plane of the escape hyperbola is defined.
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(k) Departure transition points.

If VT remained constant in magnitude and direction as the escape-

plane inclination was varied, a true small circle of transition points

would result as shown in sketch (k). However, in actual calculations the

magnitude and orientation of VT change slightly, resulting in a quasi

small circle of transition points.

Sketch (Z) shows one escape plane, determined by the zero perigee

transition point and a given longitude of the nodal line _N" The in-

clination of the escape plane is

ie= tan-i IVT VTZ N) (B21)y cos _N - VTX sin

The longitude or right ascension of the transition point for a perigee

radius of zero is defined by

sin _0 =

cos _0 =

VTy
m i

+ y

V_ + V 2TY

(B22)

since, as shown in equation (BI9), the x-y-z cgord_nates fo r the zero

perigee transition point are proportional to XT_ YT_ and ZTO
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z

_/___Equatorial plane

x

Vernal equinox

(Z) Escape-plane nomenclature.

!

Therefore, from sketch (Z)

_R,1 = _0 - _N (B2S)

and

tan qR;l(l - cos ie)] (B24)

qR, 2 = qR31 + tan-I Lc°s ie + tan2 qR, l J

For a perigee radius other than zero_ the velocity vector must be

displaced by _ as shown in sketch (j) and equation (B20). In order to

determine _ for the perigee radius desired, the normal component of

the velocity VT must be known. This velocity component VN is deter-

mined as follows:

_p = VT + 2 r_(l rr---iNF"1

rpVp (B26)
_-ri-NF
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From sketch (m) for direct motion of the space vehicle as seen from

the north equatorial pole,

qQ, i = _Q,2

- p (Bz7)
1]Q_ 2 = qR_ 2

- [tan qQ, 2(I - c°s ie)] (B28)

tan-i L I + cos ie tan2qQ_2 ]

z

Sphere of 11 S

influence/! P

[ Earth_\ Y

torial

-_ plane

-.k --nQ,

x __
-T

(m) Transition-point nomenclature.

The right ascension of the transition point is

qT = qN + UQ,1 (BZ9)

and the declination is

_T = tan-i (sin _Q,I tan ie) (B30)

The x-y-z or vernal equinox - equatorial coordinates of the transition

point or _, _3 8_ respectively_ are
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_ rlN F cos kT cos _TI

= rlN F cos hT sin _T

5 = rlN F sin hT

(B31)

x'-y'-z'-coordinate system (sketch (h)), the coor-In the nominal

dinates of the transition point are

_' = _ cos _VE + sin _VE(a cos I + 8 sin I) ]

!

c' - _ sin _VE + cos _VE(C cos I + 5 sin I)_ (B32)

38' = 5 cos I - c sin I

These coordinates are used in the heliocentric portion of the calcula-

tion procedure.

Parameters of escape hyperbola_ - The parameters defining the re-

quired escape hyperbola are the eccentricity:

eE = _VrP2_r- 1.0 (B33)

the semilatus rectum:

PE = (eE + l.O)rp (B3 )

and the true anomaly of the departure transition point (sketch (n)):

PE -i.0

cos vT = rlNF
eE

_1/1- cosZvE_

/
(B3s)

!

(/
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I

e

\\ _ plane
\
"-Equatorial plane

(n) Escape trajectory.

vT

rp _ 411hyperb°la
-kl _ Vp

_i = 0

Determination of perigee injection-point coordinates. -Knowing the

escape-plane inclination and the required true anomaly of the departure

transition point (i), the right ascension and declination of the perigee

injection point can be determined.

From sketch (o),

co = qQ, 2 - VT
(B56)

j qQ, 2u

I qN _vlT ___(i)Escape plane

Vernal _-_ P--_ / I/__ T

e quinox-j #//I_ IQ_l --_ Equatorial plane

Perigee-/ _

(o) Latitude plotted against longitude.
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_ne geocentric latitude (declination) of the perigee injection point is
defined by

sin _p = sin i e sin to (B57)

cos kp = V1 - sin2kp (B38)

Therefore,

t_ -1/sin apXP) (B39)

The right ascension of the perigee injection point is

_p = tiN + 2 tan-1 tan ie(eOS )',p + cos m) (1340)

In$ection velocity increment. - Por departure from a circular parking

orbit at i.i Earth radii, the velocity increment required at perigee in-

jection is

avp = vp - vc,P ( 41)

!

Oq

Heliocentric Segment of Trajectory

Upon arrival at the Earth's sphere of infiuence 3 the vehicle's mo-

tion is assumed to change from geocentric to heliocentric° The helio-

centric segment of the trajectory then starts at the Earth's sphere of

influence and ends at Mars' sphere of influence. The purpose of this

part of the calculation procedure is then to:

(i) Determine the required heliocentric transfer conic connecting

the departure transition point and the encounter transition

point for a given trip time

(2) Determine the required inclination of the transfer plane with

respect to the plane of the ecliptic

(3) Determine the heliocentric velocity of the vehicle at both the

departure and the encounter transition points.
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Determination of heliocentric travel an_le. - On departure from the

sphere of influence at Earth, the coordinates of the space vehicle _'3

a' and 5' shown in sketch (p), are given along with the heliocentric3

orbital radius of Earth obtained previously.

Sphere of z '

influence _\_I" _ _i

i I _ doD

/Earth-, ./ ///i,
I ., _ _ I! y' (+)

2, Mars-

ecliptic

o r node
x'(_+) , B'

(p) Heliocentric coordinates of departure point.

From sketch (p),

o' ) (B42)w e = tan -I Re + _'

Given the angle from Earth's perihelion (1960) to Mars' ascending node,

the angle _D can be determined knowing the true anomaly of Earth on

date of departure. Therefore_

_O = _D -dO e
(B43)

From sketch (p)

ta i )V'(Re + f;,)z + (o,)2

(B44)
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z"(+)

///_Mars_ Y"

X"_

_, Mars-ecliptiCnodalline \/ _2) 7 Y"(+)

v Mars' orbital plane

x" (+)

(q) Heliocentric coordinates of arrival point.

!

Cq

Sketch (q) indicates the x"-y"-z" coordinates of the space vehicle

on arrival (point (2)) at Mars' sphere of influence in the nominal ar-

rival Coordinate system. This system has as its x"-axis the Mars-Sun

line on the date of arrival at Mars' sphere of influence. The z"-axis

is normal to Mars' orbital plane, and the y"-axis completes the right-

hand coordinate system.

The heliocentric (x-y-z) coordinates of point (2) referenced to the

ascending node - ecliptic coordinate system (X"-Y"-Z") are given in equa-

tions (B45)o This coordinate system has as its x-axis the Mars-ecliptic

nodal line. The z-axis is normal to the ecliptic plane.

X = (R_ + _) cOs T - v sin T

y* = [(R_ + p)sin r + V COS T]COS _ - _ sin Im

z = [(I_ + _)sin T + v cos T]sin Im + _ cos Im

(B45)

where Im is the inclination of Mars' orbital plane with respect to the

plane of the ecliptic.

The heliocentric transfer plane is shown in sketch (r):

F
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O

!

vTransfer plane
\

. \\ (2)/"

k/,' v -_c ._--z _ z'. I_*

I/ i _ / v&.// plane

' {_Earth-Mars node

(r) Heliocentric trajectory.

The celestial latitude of point (2) is

P2 = tan-i z.

(x*) 2 + (y*)

(B46)

The angle labeled _c in sketch (r) is calculated from

sin _c " , Y (BA7)

_(x.)2 _.+ (y*)

cos % = x (B_7)

_(x.)2 + (y.)2

From sketch (r)

By spherical trigonometry

%c = % + % (:B48)

sin Q = tan Fl/tan

sin (_bc + Q) = tan P2/tan
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By using equations (BAg) and (BS0), the following equation can be

obtained for the inclination of the transfer plane with respect to the

ecliptic:

= tan- I .tan P2 - cos _bc tan PI + tan2p

sin _Obc

(B5I)

By spherical trigonometry

QS = tan-i (tan Q_
Vos _/

(B52)

The heliocentric angle from the transfer plane - ecliptic node to point

(2) measured in the transfer plane is

"tsin (O + QS) : sin P2/sin • (B53)

cos (e + QS) = cos r2 cos (a_oe + Q)
J

These angles are indicated in sketch (r). Therefore, the heliocentric

travel angle from point (1) to (2) measured in the plane of the transfer

plane e can be obtained:

e = (e + QS) - QS (BSA)

Parameters of transfer conic. - The heliocentric departure and ar-

rival radii are

11/2+ (_,)2 + (8') (_s5)

R2 = [(x.)2 + (y*)2 + (z*)2]l/2 (B56)

With e, RI, R 2 and the trip time TI, 2 from points (i) to (2), the

heliocentric conic section can be determined by iteration.

The general expression for travel time on a conic referenced to

perihelion is as follows:

1/23/2/ov
T = _ dv

(i + e cos v)2

(B57)

!
t-J

01

f
f
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Integrating this general equation for time, the specific time equations

for an ellipse, a parabola, and a hyperbola are obtained:

e <i.0:
f

_3/2 J_-e sin v

T = 1/2 _ + e cos v
_S (i - e 2)

+ 2I n-i -e sinv
(i + e)(i + cos v)JJ

(Bss)

e = 1.0:

2 + cos v)2]i + cos v

e >Io0:

_°S/2( , [l-e sin v + i in I +

T

_S1/2"1 - e_2 + e COS v

(B59)

./-T
cos v + Ve _ - 1 sin v_l_

4i + e cos v

(B60)

Equations (B58), (B59), and (B60) are transcendental in v; therefore,

there is no direct solution for v. An iterative solution is required

to determine vI and v 2 given TI, 2_ 8, RI_ and R 2. Assuming a

value of v I the eccentricity can be found from

e :=

E 2

R I

R 2
-- cos v 2 - cos v I
R I

(B61)

where v 2 = vI + e.

The semilatus rectum of the conic is

p = RI(I + e cos Vl) (B62)

Thus, depending on the eccentricity, equations (B58) to (B62) are iter-

ated until an acceptably small difference in the calculated trip time

and the required trip time is obtained°
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The semimajor axis is

and

a = _ (B63)
2

i - e

The departure and arrival heliocentric trajectory angles are

e sin v1 (B64)
_i = tan-1 i + e cos v1

!

O7

_2 = tan-i
e sin v2

i + e cos v2

The departure and arrival heliocentric velocities are

= L/_s (2a - RI)
vl .

and

(B6S)

- pR--_
(B66)

where p _ R2/R I.

Vehicle velocity relative to Earth at departure transition point.-
The X'-Y'-Z' components of the departure heliocentric velocity are

Vl, x = V1 cos(_ 1 - Qs)COS • sin (Q - _e) + V1 sin(cul - QS )c°s (Q - ee

Vl, Y = v1 cos(cuI - Qs)cos _ cos (Q - _e) - V1 sin(_l - QS )sin (Q - _e

Vl, Z = V1 cos (c_1 - %) sin T

(B67)

f

/
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The X' and Y' components of the Earth's velocity are

VEx= % sin_ (B68)
VEy Ve cos

Therefore, in the nominal departure coordinate system (sketch (p)) the

X'-Y'-Z' components of the relative velocity at the departure transi-

tion point are

VNX = Vl, x - VEX

v_: Vl,Y - vEy

VNZ = VI3 z

(B69)

These components of the relative velocity are now used to determine a

new set of departure transition point coordinates. This iterative pro-

cedure is used until an acceptably small difference in the transition

point coordinates is obtained.
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I

Mars and vehicle

at 500 days
Mars at 250 days

i

Vehicle at/
250 days J

!
!
!

f

/I _

/ _ _"_ _. 150

Z
! /r Transmission distance,

250 [ vehicle to Earth upon

arrival at Mars

/ Sun

; o
!

, /

Earth at

500 days

2OO

Figure I.

\
\

ORBIT OF EARTH J/

\

RBIT OF MARS

I00
/

/
/

/

/_ 450
/

/I /

PATH OF VEHICLE J // /
/ .i

Earth at 0/'/.I/ /
50 days /

' 7/_ ehicle at /

50days /

__Mars at 0 days

Earth and vehicle

at 0 days

(b) 500-Day trip.

- Concluded. Position of vehicle with respect to Earth and Mars
during typical 150- and 500-day trips to Mars.
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encounter-plane inclination, 50°; arrival trajectory angle, 0 °.
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Figure ii. - Concluded. Geocentric escape-plane orientation and perigee injection

requirements for a trip to Mars. Injection times over span of I day; trip time,

Tto t, 500 days; encounter-plane inclination, 90°; arrival trajectory angle, 0 o.
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